
Essential Linux
Junfan Zhu

Email: junfanz@gatech.edu | Blog: junfanz1.github.io

Last update: 2022-12-10

Content
• Essential Linux

– Content
• 1. ls, cd, cp, cat, mv, mkdir, rm, touch
• 2. tmux, vim

– 2.1. tmux
– 2.2. vim: editor in command line

• 3. Shell
– 3.1. Variables
– 3.2. Array, expr, read, echo, test, []
– 3.3. If, Loop and Function
– 3.4. Files

• 4. ssh
• 5. Git

– 5.1. Add, Commit, Roll Back
– 5.2. Push, Pull, Branch, Stash

• 6. thrift: multiple servers communication
– 6.1. thrift
– 6.2. Producer-Consumer Model
– 6.3. Multi-Threading and Lock
– 6.4. User Match System

∗ 6.4.1. Architecture
∗ 6.4.2. C++ Demo

• 7. Environmental Variable and Pipe
– 7.1. Environmental Variable
– 7.2. Pipe
– 7.3. Frequently-Used Linux Commands

∗ 7.3.1. Tools
∗ 7.3.2. System
∗ 7.3.3. File Search
∗ 7.3.4. File Permissions

• 8. Docker
– 8.1. Rent a Cloud Server
– 8.2. Docker Image and Container

∗ 8.2.1. Docker Image
∗ 8.2.2. Docker Container

– 8.3. Demo: Deploy Docker to Cloud Server

1

mailto:junfanz@gatech.edu
https://junfanz1.github.io

README: This document probably covers 99% practical developing and debugging
commands on Linux, and saves you from searching everytime for those frequent
usage that you may forget. To compose this document is also a process of my
comprehension and skills enhancement. Feedbacks and corrections are welcome!

1. ls, cd, cp, cat, mv, mkdir, rm, touch

Syntax Description
1. find a see directory structure under a
2. balabala Control + c skip whole line (if you mistype)
3. balabala Control + u clear whole line (if you mistype)
4. history all history you’ve typed
5. cat tmp.cpp see the content of tmp.cpp
6. Control + Insert copy a line in command line (to

paste outside)
7. Shift + Insert paste into command line (from

outside)
8. ls ../ .. goes to parent path
9. ls ../tmp/./ . current tmp folder
10. ls ~/tmp/main.cpp ~ home path
11. ls -l list long detailed info
12. ls -hl same as ls -l, but change file size

info to a humanized way: how many
K

13. ls -a list all file under path including
hidden files, whose name starts with
.

14. ll same as ls -a
15. ls -A same as ls -a, but not showing

current path
16. pwd show current path
17. cd a change directory to ~/a folder
18. cd - back to previous directory
19. mkdir a create folder a
20. rm c -r delete folder c
21. rm t.txt delete t.txt
22. rm a/* delete everything inside a folder, but

keep a folder
23. rm * -r delete files in folder, but keep hidden

files
24. rm /* -rf go die, delete everything and run
25. rm t.txt s.txt delete two txt files
26. touch tmp.txt create file tmp.txt. (touch is create)

2

Syntax Description
27. cp a/tmp.txt b copy tmp.txt in a folder, paste into b

folder
28. mv a/tmp.txt b/ move it from a into b folder
29. cp a/tmp.txt b/tmp2.txt copy tmp.txt in a folder, paste into b

folder, rename file
30. mv a/tmp.txt b/tmp2.txt move it and rename it
31. mv a/* b/ move everything in a folder into b

folder
32. mv tmp.txt tmp2.txt rename tmp.txt to tmp2.txt
33. cp a b -r copy folder a into b
34. mkdir --h see all operations of mkdir
35. mkdir a b c create folder a, b and c
36. mkdir a/b/c -p make directory a/b/c one inside one

2. tmux, vim
2.1. tmux

• Split screen.
• Develop in tmux, there’s no worry about data loss caused by interruption

or network down, especially useful for long running code.
• Can open many sessions. Each session has many windows. Each window

has many panes. Each pane has a shell interactive, can write codes and
see outputs there.

• If no pane in a window, a window automatically disappear. If no window
in a session, a session automatically disappear.

Syntax Description
1. tmux go into tmux, a new terminal pops

up
2. Control + d close and exit current pane
3. use mouse to click on a certain pane on the

screen; to drag the segmentation line
between panes to adjust size

4. Control + a, % split current pane into 2 panes, left
and right

5. Control + a, " split current pane into 2 panes, up
and down

6. Control + a, z full screen mode, second time: cancel
full screen mode

3

Syntax Description
7. Control + a, d detached from session, jump from

pane out out out of session
8. tmux a tmux attach, reopen previously

detached session
9. Control + a, s up/down to select which session,

left/right to expand or goback
10. Control + a, c create a new window in current

session
11. Control + a, w select other windows, deeper than

Control + a, s (session level)
12. Shift select certain text

2.2. vim: editor in command line

Syntax Description
1. [Edit file - Step 1] vim tmp.txt open this file or create new file

tmp.txt.
2. [Edit file - Step 2] i edit mode.
3. [Edit file - Step 3] ESC escape from edit mode, and go back

to default mode.
4. :, /, ? either of the three will go to

command line mode in the bottom.
5. :w save
6. :w! save enforced
7. [Edit file - Step 4] :wq<Enter> save and quit
8. :q quit
9. :q! quit enforced
10. 0 go to beginning of this line
11. $ go to the end of this line
12. G go to the final line
13. :n, nG go to n-th line, e.g. :10 goes to 10-th

line.
14. gg, 1G go to first line
15. n<Enter> go to next n-th line, e.g. 3<Enter>

goes to below 3-th line
16. n<Space> go to next n-th letter, e.g. 3<Space>

goes to right 3-th letter
17. /word find first word below current

location, e.g., /int, find first int
below.

18. ?word find first word above current
location, e.g., /int, find first int
above.

4

Syntax Description
19. n repeat previous search, e.g., int will

seach each int one by one from top
to bottom.

20. N repeat previous search in reverse
order, e.g., int will search each int
one by one from bottom to top.

21. :n1,n2s/word1/word2/g between n1 number row and n2
number row, find word1 string,
replace word1 by word2.

22. :1,$s/word1/word2/g replace all word1 by word2.
23. v select certain text. To cancel

selection, do ESC * 2.
24. :noh no highlight
25. d delete selected text.
26. dd delete whole row. (Actually it’s cut,

can be pasted somewhere else.)
27. y copy selected text.
28. yy copy whole row.
29. p paste selected text in current

location. If you select whole line, it
will be pasted in next row.

30. u revoke, similar to Control + Z.
31. Control + r cancel revoke
32. Control + insert copy the selected content
33. Shift + insert paste the selected content
34. Shift can select any lines you want
35. Shift + > move right the selected text
36. Shift + < move left the selected text
37. :set nu show which number of line you’re at
38. :set nonu hide which number of line you’re at.

This is useful when you want to copy
the code without copying the line
number by hiding the number.

39. ggd100G delete the first 100 lines, 100 can
change to any other number. Can
break down to gg + d + 100G.

40. 100Gdd delete the 100-th row
41. Gp paste the deleted line to the end of

file last line.
42. 100Gyy copy the 100-th row
43. G100<Space>i<BackSpace>ESC go to the final line, the 100-th letter,

edit mode, delete this letter, return.
44. 3G8<Space>i<BackSpace>ESC go to the 3rd line, the 8-th letter,

edit mode, delete this letter, return.

5

Syntax Description
45. gg30 go to first line, 30-th letter.
46. 16<Enter>55 go to 16-th line, 55-th letter.
47. 11G14<Space>v13G5<Space>d delete letters from 11-th row 15-th

letter (including this letter) to 13-th
row 5-th letter (including this letter).
v is edit mode.

48. G$p paste the deleted content to the end
of file without starting a new row.
Can be break down to G$: go to the
last letter, p paste.

49. ggdG delete everything from first line to
last line.

50. gg=G format all, remove redundant
indentations.

51. :set paste paste from outside without
automatic indentation. (By default,
vim has redundant indentations).

52. :set nopaste cancel paste mode, and reopen
automatic indentation. (When
you’ve pasted already and want to
edit the code, you need this to
reopen automatic indentation).

53. Control + q kill current job (if vim is not
responding).

54. - It’s a <Space> in vim, need to delete
them when copy/paste code.

55. Exceptions handling If a file is opened twice, it’s a confilct.
You can either close that file by :q,
or delete the main.cpp.swp file by
rm .main.cpp.swp.

3. Shell
• Communicating with operating system using command line.
• Command line can be viewed as executing each line of shell file.

3.1. Variables

6

Syntax Description
1. vim test.sh create test.sh
2. [First Line in a shell file] #!
/bin/bash

write this in the first line inside
test.sh file, must specify bash as
interpreter, otherwise cannot
execute.

3. #! /usr/env/python same logic, to specify python as
interpreter and tell operating
system.

4. [Second Line in a shell file]
echo "Hello World!"

Need to save the file everytime
before exit.

5. [Execution Method 1, First
Step] chmod +x test.sh

to grant access to this file as
executable, color change from white
to green (executable).

6. [Execution Method 1, Final
Step] ./test.sh or ~/test.sh

execute shell file.

7. [Execution Method 2] bash
test.sh

No space near = when defining a
variable! name='abc' or name=abc
or name="abc", all works.

8. $: calculate the value echo $name or echo ${name} will
output abc. echo ${name}def will
output abcdef.

9. readonly name or declare -r
name

2 ways of declaring name read only.
After declaration, will no longer
permit to change the variable,
e.g. name=def.

10. unset name delete variable name. After that,
when you echo $name, no output.

11. export name declare -x name 2 ways of changing local variable
name to global variable. (Subprocess
cannot access local variable, but can
access global variable.)

12. export name=abc [Change global variable name to
local variable, Step 1: Define
global variable]

13. declare +x name [Change global variable name to
local variable, Step 2: Change
global variable to local variable]

14. '' and "" 'balabala' will output as it is.
"balabala" can be executed or pick
up variables.

15. man echo see echo tutorial.
16. echo '$name \"hh\"' output $name \"hh\".
17. echo "$name \"hh\"" output abc "hh".

7

Syntax Description
18. echo $? return previous command exit code

(not stdout), 0 means normal exit
(it’s similar to C++ main function
return 0, means normal exit), other
values means error. This is very
useful for debugging.

19. echo $(command) return stdout of command. This is
useful to show the output (it’s
similar to C++ cout).

20. echo ${#name} output length of name = 3.
21. echo ${name:0:3} output substring of name from 0 to 3.
22. Pass parameters to shell $1 is the first parameter, $2 is the

second parameter, etc.

Example

Must have the first line #! /bin/bash to specify bash grammar.

#! /bin/bash

echo "File name:"$0
echo "First parameter:"$1
echo "Second parameter:"$2
echo "Tenth parameter:"${10}

Execute above shell and pass each value into it.

./test.sh 1 2 10

3.2. Array, expr, read, echo, test, []
• expr gets stdout result. In logical expression, If true, stdout = 1; If false,

stdout = 0.
• test gets exit code result, 0 = true, nonzero = false.
• expr also output its result in exit code.

– In logical expression, If true, exit code = 0; If false, exit code =
1.

– In numerical or other expressions, exit code = 0.

Syntax Description
1. array=(1 a "b") Create array, same as array[0]=1,

array[1]=a, array[2]="b".
2. echo ${array[index]} read [index] element of an array.
3. echo ${array[@]} or echo
${array[*]}

Read whole array.

8

Syntax Description
4. echo ${#array[@]} or echo
${#array[*]}

Actual length of array.

5. echo $(expr length "$str") Output length of the str. Note: The
"" in "$str" is to avoid <space> in
str (Hello<Space>World!) that
causes error.

6. echo $(expr index "$str"
balabala)

Output the index (start from 1) of
any letter in str that has the same
letter in balabala, if no such letter
then return 0.

7. echo $(expr substr "$str" 2
3)

return a substr of str that starts
from letter 2 and substr length = 3

8. echo $(expr $a + $b) return a + b
9. echo $(expr $a - $b) return a - b
10. echo $(expr $a * $b) return a * b
11. echo $(expr $a / $b) return a / b
12. echo $(expr $a % $b) return a % b
13. echo $(expr \($a + 1 \) *
\($b + 1 \))

return (a + 1) * (b + 1). Note
that each item in expr needs a
<Space>, including (and) which
also needs \ ahead.

14. echo $(expr $a '<=' $b),
echo $(expr $a \<\= $b)

return comparison boolean 0 or 1

15. echo $(expr 3 + 4 + 5) return 12
16. a = 3, a = expr $a + 4,
echo $a

return 7

17. read name, echo Hello,
$name

You enter World, it outputs Hello,
World

18. read -p "balabala" -t 5
name, echo Hello, $name

It says balabala and suggest you to
input, You enter World, it outputs
Hello, World. It wait for your
input for only 5 seconds, if you don’t
answer, after 5 seconds it ignores
such command, and continues to the
next command, which is echo
Hello, $name, and output Hello,.

19. echo "Hello World" >
output.txt

output into file output.txt. You
can see the output by ls, cat
output.txt.

20. test -e test.sh && echo
"exist" || echo "Not exist"

output exist if test.sh exist, vice
versa. Note that after every test,
need to enter another line echo $?
to see its result, result 0 means true,
nonzero means false.

9

Syntax Description
21. test $a -eq $b if a equals to b. Note that eq is

equal, ne is not equal, gt is >, lt is
<, ge is >=, le is <=.

22. [2 -lt 3] True, return 0. Note that [] is same
as test but more in if conditions.
Everything inside [] needs <Space>.

23. name="abc", ["$name" ==
"abc"]

True. Note that every string
including variable needs "".

3.3. If, Loop and Function

Syntax Description
1. if condition then balabala
elif condition then balabala
elif condition then balabala
else balabala fi

fi means end of if-condition (similar
logic we have case...esac). It
judges the exit code of the
condition.

2. for var in var1 var2 var3 do
balabala done

for loop. If infinite loop, Control +
C.

3. seq 1 10 return 1 to 10 in each line, this can
be written in command line
terminal.

4. for i in {1..10}, for i in
{a..z}

Note this cannot be written in
command line terminal, but can use
in for loop.

5. for ((i=1; i<=10; i++)) do
balabala done

Needs two (()).

6. while read name do echo
$name done

Read each variable name in the file
and output one by one until the end
of file, if condition is true, I continue.
Note that when read comes to the
end of file (Control + d), it returns
exit code = 1.

7. until condition do balabala
done

If condition is false, I continue.
until do is the opposite of while
do.

8. break break from current loop, jump out
from this loop layer. It’s different
from C++ that: in Shell, break
cannot jump out of case.

9. continue jump out from current loop, for this
time.

10

Syntax Description
10. func() {echo "balabala"
return 123} output = $(func)
ret = $? echo "output =
$output" echo "return = $ret"

Output = balabala, return = 123.
Note that call the function: func,
not func().

Example

func() { # calculate 1 + 2 + 3 + ... + `$1` by recursion
if [$1 -le 0]
then
echo 0
return 0

fi

sum=$(func $(expr($1 - 1))
echo $(expr $sum + $1)

}

echo $(func 10) # output = 55
sum is calling func(9), and then echo sum + 10.

Note

• $0 inside the function is the filename, not function name.
• $1 is the first parameter, $2 the second parameter, etc.

3.4. Files
How to copy out the files in server

• Exit tmux, cat filename to show content in the file.
• Use mouse to select text beginning, drag the mouse to the end of the file.
• Shift, and use mouse to click on the end of the file, it will select everything

in the file.
• In Windows/Linux, Control + Insert to copy all; In Mac, Command + c

to copy all.

Syntax Description
1. command > file redirect stdout into file, override

file, e.g. ls > output.txt
2. command >> file redirect stdout into file, add new

content to current file
3. command < file redirect stdin into file
4. . filename or source filename This imports whole filename into

current file

11

4. ssh

Syntax Description
1. ssh user@hostname Connect to remote server.
2. ~/.ssh/config Configuration, make a short

nickname for long IP address. Go to
ssh folder (mkdir .ssh), create a file
vim config, after the above code
block setup, you can connect to
server next time by ssh myserver.

3. ssh-keygen Generate public and private rsa key
pair.

4. ssh-copy-id myserver To connect to server without a
password. You can also copy the
public key (cat id_rsa.pub) to
~/.ssh/authorized_keys file (go to
ssh myserver, put password, cd
.ssh/, vim authorized_keys, paste
public key). Next time you ssh
myserver, it will be automatic
connection, no password needed.

5. ssh myserver ls -a Show all files on server
6. ssh myserver 'for ((i = 0;
i < 10; i ++)) do echo $i;
done'

Run command on server. Note that
use '' to quote on command with
variables to avoid error. SSH will
redirect the output in server to our
terminal.

7. scp -P 22 source1 source2
destination

Copy file source1 and source2
(multiple files) to destination,
specify server port 22, note that this
is Capital P.

8. scp source destination source can be a file on website, copy
this file to destination.

9. scp -r dir/
myserver:/home/abc

Copy/Upload whole local folder
dir/ to myserver under :/home/abc
directory. This can upload a batch
of files, no need to upload single file
one by one. Note that here -r is in
the front, not at the end.

10. scp -r ~/tmp
myserver:/home/abc

Same thing. Copy/Upload a local
file tmp to myserver under
:/home/abc directory.

11. scp -r myserver:tmp/a.txt . Copy ~/tmp/a.txt file on myserver
to local current path.

12

ssh config

~/.ssh/config

Host myserver1
HostName: # IP address
User: # user name

Host myserver2
HostName: # IP address
User: # user name

5. Git
5.1. Add, Commit, Roll Back
The logic of git is the same as a linked list for each branch, adding a new node
and move current HEAD to the next node. There’re many branches and forms a
tree structure.

• Working Directory ↣ Stage (Index) ↣ Repository

Syntax Description
1. git config --global
user.name abc, git config
--global user.email
abc@abc.edu

Set up your user name as abc, emial
as abc@abc.edu. This info is stored
in .gitconfig file.

2. git init Initialize current folder as git
reposiroty. Hidden repo info is in
hidden folder .git.

3. git status If you modify a file but haven’t
added, if you’ve added a file but
haven’t committed, it will tell you.

4. git add tmp.txt Add this file to stage, but you
haven’t committed yet.

5. git add . Add all modified files to stage.
6. git commit -m "balabala" Commit this file with notes

"balabala"
7. git diff tmp.txt Compare difference between current

file in stage and its historical version
in working directory, before you
commit.

8. git log See all historical versions under this
branch.

13

Syntax Description
9. git reflog See the history of HEAD version

movements, including rolled-back
versions. Because you won’t see the
version in git log if you’ve deleted
the most recent version.

10. git checkout - tmp.txt or
git restore tmp.txt

Discard changes in working directory
(that haven’t been added to Stage)
of file tmp.txt. Note that git
restore didn’t roll back to previous
version, it just delete the version in
working directory and roll back to
the version in Stage.

11. git restore --staged
tmp.txt

Unstage tmp.txt, just remove the
file from Stage, but you still need
this file.

12. git rm -- cached tmp.txt Remove tmp.txt from cache, and
you no longer need this file. If you
still need it, do git add tmp.txt
again, then it’s no difference from
unstage command above.

13. git reset --hard HEAD^ or
git reset --hard HEAD~

Roll back current version to
previous version.

14. git reset --hard HEAD^^ Roll back current version to previous
second version (two versions ahead).

15. git reset --hard HEAD~100;
git reset --hard abcdef

Roll back current version to previous
100-th version (100 versions ahead);
Roll back or forth to version abcdef
(first 6-letter of a version number).

5.2. Push, Pull, Branch, Stash

Syntax Description
1. git branch * shows which branch you’re at.
2. git branch branch_name Create new branch.
3. git checkout -b branch_name Create and switch to branch

branch_name.
4. git checkout branch_name Switch to branch branch_name.

14

Syntax Description
5. git merge branch_name Merge branch_name to current

branch. If automatic merge failed,
probably both modifications are
done on the file, then you need to fix
conflicts and then commit. After
that, you can delete one branch with
conflict.

6. git branch -d branch_name Delete local branch branch_name.
7. git push origin branch_name;
git push -u

Push local branch_name branch to
remote repository; Push current
branch to remote repository. The
first time you need -u, in future no
need.

8. git push --set-upstream
origin branch_name

Create local branch branch_name to
remote repository branch
branch_name. Note that the current
branch branch_name has no
upstream branch, so you need to
push the current branch and set the
remote as upstream. This may
happen when you switch to another
branch but this branch doesn’t exist
on remote repository yet.

9. git push -d origin
branch_name

Delete remote repository branch
branch_name.

10. git pull or git pull origin
branch_name

Merge current branch with remote
repository branch, current branch or
branch_name branch. Pull =
Download + Merge.

11. git branch
--set-upstream-to=origin/branch_name1
branch_name2

Local branch branch_name1 set up
to track remote branch_name2.

12. git stash Use stack to store any modifications
in working directory or in stage, that
haven’t been commited.

13. git stash list See whole elements in the stack of
git stash.

14. git stash apply Revert this modification back to
current branch, but not delete this
element.

15. git stash drop Delete the stored modification on
the top of the stack.

15

Syntax Description
16. git stash pop Pop out the first element in the

stack, it means revert this
modification back to current branch,
and delete this element. (You may
need to handle conflict by popping
out again on the main branch when
you pop out on a second branch and
return to the main branch while the
main branch has already been
modified. To avoid this, you’d better
commit every time before you switch
to a different branch.)

6. thrift: multiple servers communication
6.1. thrift

• thrift is an RPC (Remote Procedure Call) framework, which can
call any functions on any server from any server. This enables us to
write Python on a server that calls another C++ API on another server, by
receiving commands and passing results.

• thrift server needs multi-threading. Multiple times of calling APIs will
generate a lot of threads, if you push the message queue from all threads
at the same time, it will have bug (e.g., queue head override inconsistency
issue).

• Apache thrift can be used in Micro-services. Tutorial: https://thrift.a
pache.org/tutorial/cpp.html

• thrift is faster than socket, you can focus more on business side with
this tool, without reinvent the wheel. Wtih socket you need to define
serialization and implement message communication interface between cpp
and python, manage the socket, which is much more code.

Technical Notes

• ./main: After compilation, launch server.
• python3 client.py: Execute client.py.
• If you have compiled 100 files together, then you only need to compile the

files that are modified, no need to compile all files again.
• make identifies which files are modified, it only operates on the modified

files. But we not often use make because one man can only write a few
cpp files, not 100 files, so g++ -c main.cpp is enough.

16

https://thrift.apache.org/tutorial/cpp.html
https://thrift.apache.org/tutorial/cpp.html

Syntax Description
1. thrift -r --gen cpp
../../thrift/match.thrift

After creating the interface, and
mkdir src to create source file
folder, in this folder we generate the
server in cpp, where the thrift path
is ../../thrift/match.thrift.
(thrift -r --gen py
../../thrift/match.thrift for
python) Then do ls, we can see
gen-cpp folder, do tree . we can
see the structure in this folder,
there’re many cpp files already been
automatically created, among which
skeleton.cpp is equivalent to the
main.cpp we want.

2. g++ -c main.cpp
match_server/*.cpp

[C++ compilation, Step 1:
compile] Compile main.cpp, and
compile all cpp files in
match_server. We only compile cpp
file, no need to compile h file (header
automatically involves in the
compilation). You’ll see many .o
files which means they are compiled.

3. g++ *.o -o main -lthrift [C++ compilation, Step 2: link]
Link all .o files together, using
-lthrift dynamic-link library
(DLL). After link, we can run
./main and it will run. Use git
restore --stage *.o to not
include main executable file and *.o
compiled files before you push to
git, it’s good habit to only commit
source files.c Same, use git restore
--stage *.pyc to not include
python compiled intermediary file
and git restore --stage *.swp
to not include vim file in git push.

4. g++ *.o -o main -lthrift
-pthread

If you compile cpp code which used
thread, you need to add -pthread
here.

6.2. Producer-Consumer Model
Producer-Consumer Model in C++ by creating a thread. Between Consumer
and Producer, is message queue q. In message queue we need locks, because

17

sometimes Consumer and Producer both need to write or execute q, may causing
conflicts at the same time, so we need to put this message queue inside two locks.
mutex has 2 operations:

Thoughts

• Can I avoid using threading in consumer? What if I execute task once I
receive a request?

– No. Because when a new request come, there’s no guarantee when
there’s a match. 2 logics (Receiving request and Matching) are inde-
pendent from each other and not the same. Single threading cannot
make it.

• Why lock is needed in multi-threading?
– Because multi-threads shares the same one memory space.
(e.g. Global variable message_queue is shared by thread consumer
and thread message_queue.push when receiving request.) But each
process has independent stack space.

6.3. Multi-Threading and Lock
Semaphore ↣ Lock ↣ Conditional Variable

The nature of a lock is semaphore. Mutex is a mutual exculsive semaphore.
Semaphore has two atomic operations:

• P(s): add lock. To obtain the lock and make sure other threads are
blocked outside the same code and only one thread is occupying this queue

• V(s): release lock. To release lock to other potential threads once this
thread has finished its job.

s means how many operations can be done and share this thread at the same
time. If s > 0, we execute P(s) or V(s), and s -= 1. If s = 0, it’s blocked,
we won’t restart execution until s > 0. If s = 1, it’s mutual exculsion (mutex),
only 1 thread can occupy the code at one time.

Condition variable is an encapsulation of lock.

6.4. User Match System
6.4.1. Architecture

Client - match_server - save_client_data

Server (Game) - match-client

thrift - Server ↣ remove/add user ↣ Client

Create thrift
vim match.thrift

18

// In the file
namespace cpp match_service

struct User {
1: i32 id,
2: string name,
3: i32 score

}

service Match {
// Interfaces pass in user and other info, return int type
i32 add_user(1: User user, 2: string info),
i32 remove_user(1: User user, 2: string info)

}

6.4.2. C++ Demo

#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <vector>

struct Task
{
User user;
string type; // operation type

};

struct MessageQueue
{
queue<Task> q; // a queue to store Task
mutex m; // a lock
condition_variable cv;

}message_queue;

// a pool to store all users' info and match users
class Pool
{

public:
// operations to add or remove user
void save_result(int a, int b)
{
printf("match result: %d %d\n", a, b);

}

19

void match(User)
{

while (users.size() > 1)
{

auto a = users[0], b = users[1];
// delete first user
users.erase(users.begin());
// then the second user become the first user, delete this user again
users.erase(users.begin());
save_result(a.id, b.id);

}
}

void add(User)
{
users.push_back(user);

}

void remove(User)
{

// need to traverse user_id to remove user
for (uint32_t i = 0; i < user.size(); i ++)

if (users[i].id == user.id)
{
users.erase(users.begin() + i);
break;

}
}

private:
// user info
vector<User> users;

}pool;

class MatchHandler : virtual public MatchIf {
// This class is generated by `thrift -r --gen cpp ../../thrift/match.thrift`
public:
MatchHandler() {

// init
}

int32_t add_user(const User& user, const std::string& info) {
// implementation
printf("add user\n");

// add a lock `m` above push operation on message queue.

20

unique_lock<mutex> lck(message_queue.m);
message_queue.q.push({user, "add"});
// There's no need to unlock.
// Because there's a destructor to automatically unlock after the function is done.

// Use condition variable to wake up this function
// notifying all threads that are waiting. Wake up!
message_queue.cv.notify_all();
// notify_all() or notify_one() to notify random one.

return 0;
}

int32_t remove_user(const User& user, const std::string& info) {
// implementation
printf("remove user\n");
// same as above
unique_lock<mutex> lck(message_queue.m);
message_queue.q.push({user, "remove"});
message_queue.cv.notify_all();

return 0;
}

}

void consumer()
{
// If no lock or multi-threading, there will be a bug!
// Because consumer will end up in infinite loop, never get executed.

while (true)
{

// Pass in the lock `m`.
unique_lock<mutex> lck(message_queue.m);
if (message_queue.q.empty())
{

// If message queue empty, this thread is waiting, to avoid infinite loop.
// Use condition variable to wait until it's notified_all() by other threads.
message_queue.cv.wait(lck);
continue;

}
else
{

// If message queue not empty, pick up the front, and delete it.
auto task = message_queue.q.front();
message_queue.q.pop();

21

// Unlock immediately after finishing with sharable variable, before doing task
// To reduce waiting time for other threads using message_queue.
lck.unlock();
// do task
if (task.type == "add") pool.add(task.user);
else if (task.type == "remove") pool.remove(task.user);

pool.match();
}

}
}

int main() {
// Thread 1: Consume. To keep executing an infinite loop.
thread matching_thread(consumer);

// Multi-threads
// Whenever server receivex any request, it allocates a thread to execute function.
server.serve();

}

7. Environmental Variable and Pipe
7.1. Environmental Variable

Environmental Variables Description
1. HOME home directory.
2. PATH Path where all the commands are

stored. When you write a command,
Operating system will traverse all
commands in PATH until it finds the
first command that matches your
command.

3. LD_LIBRARY_PATH C++ distinguish dynamic-link and
static-link. If main function uses
dynamic library, it will find the .so
file with this function when execute.

4. CPLUS_INCLUDE_PATH Path of C++ .h header files.
5. C_INCLUDE_PATH Path of C .h header files.
6. PYTHONPATH Path of python imported packages.
7. JAVA_HOME Path of jdk.
8. CLASSPATH Path of Java imported classes.

22

Environmental Variables are global variables that can be visited by all processes.
Linux uses environmental variables to log config info, and we can change system
config by changing environmental variables.

Technical Notes

• You can store the path in .bashrc, next time you open the command line,
you don’t need to cd path every time, but can run functions directly.

• When you add path, add path on the top, because duplicated environmen-
tal variables will only be executed the first one in order.

Syntax Description
1. env Show current user’s variables.
2. set Show current shell variables,

including current user’s variables.
3. export Declare environmental variables that

are exported from user’s variables.
4. echo $PATH Output a value of environmental

variable. (e.g. echo $HOME)
5. export PATH=/home/a/b:$PATH Change current variable PATH to

/home/a/b directory, and use
:$PATH save current info of PATH.
Note that : is because all paths are
separated by : in PATH, $ is to get
values from PATH. Then we do cd ~/,
it shows your home directory is now
changed to /home/a/b.

6. vim ~/.bashrc, then add the
command (e.g. export
HOME=/home/a/b) to the last line,
then source .bashrc to apply this
change.

To apply the change of
environmental variable to all
environments in the future, we need
to put the command in ~/.bashrc
file. Then source .bashrc to apply
this change to current bash
environment and all the future
environments, because every time we
start bash, it will run ~/.bashrc file;
every time we ssh remote server, or
tmux a new pane, it will start bash.

7.2. Pipe
Pipe redirects previous command’s stdout to next command’s stdin. It’s useful
for batch processing on many files by connecting commands together.

• Pipe only redirects stdout, it ignores stderr.
• The next command on pipe’s right must accept stdin.

23

• Many pipes can connect one by one.

Difference between pipe and file redirection:

• File redirect output to a file echo "Hello" > output.txt). Left is com-
mand, right is file.

• Pipe’s left is command and stdout, right is command and stdin.

Pipe command

find . -name '*.py' | xargs cat | wc -l

• Calculate total rows of all the .py files under current directory.
– Notes: find . means find in current directory, | is a pipe to output

to next command.
– xargs turns stdin to file’s content, using <Space> to separate con-

tents in stdin, as an input and pass into cat.
– xargs cat is to cat show contents of all the files, same as cat

./a.py ./b.py ./c.py and so on.
– wc is total rows of stdin.
– Without xargs, the output will only be total number file names,

not the total rows of contents of the files.

Notes on xargs

• After find command, we need xargs on the right of the pipe, because find
returns file name, and xargs turns file name into command parameter.

• After cat command, we don’t need xargs, because cat filters on the
content.

7.3. Frequently-Used Linux Commands
7.3.1. Tools

Syntax Description
1. md5sum main.cpp Return md5 hash value for file

main.cpp. (Encryption for some
APIs to connect to port, or match
password without looking at the
password by comparing the hash
value only.)

2. time command Execution time of command.
3. ipython3 Quick calculator. It’s much better

than expr in shell when you have
many ().

4. watch -n 0.1 command Execute command every 0.1 second.
5. tar -zcvf xxx.tar.gz /path/* Compress all files under /path to

xxx.tar.gz. (No * also works.)
6. tar -zxvf xxx.tar.gz Unzip file.

24

Syntax Description
7. diff x y Find difference between x and y file.

If not output, then x, y are the same.
8. sudo command Execute command as root user, root

is the king in operating system and
can do anything.

9. apt-get install xxx Install xxx software. If you don’t
have permission, add sudo in the
front.

10. pip install xxx --user
--upgrade

Install python packages.

7.3.2. System

Syntax Description
1. top Linux task manager, to show CPU

processes info. Put M to rank by
memory, put P to rank by CPU, put
q to quit.

2. df -h Show hard disk usage, -h means in a
humanized way to show the size in G
or M.

3. free -h Show memory usage.
4. du -sh Show current directory occupies how

much space on hard disk.
5. ps aux Show all processes.
6. ps aux | grep abc Search for one specific process abc, |

is pipe, grep is a string matching
tool to find a name includes abc. It
will show 2 processes, the first one
being that process we want to find,
the second one is current grep
process. (After you find this process,
you can kill it.)

7. kill -9 pid To kill a Process ID = pid. If pid =
6298, then kill -9 6298. Note: -9
means SIGKILL signal. If you want
to use SIGTERM signal, do kill -s
SIGTERM pid.

8. netstat -nt Check Internet connection. This is
useful if you want to check on ssh
myserver, there may be many IP
connections from Internet worldwide.

9. w List current logging in user.

25

Syntax Description
10. ping www.google.com See if you can access Google, to

check your laptop has Internet
connection.

7.3.3. File Search

Syntax Description
1. find /path/ -name '*.py' Search all .py files under path.
2. grep balabala Read data from stdin, filter on the

content if it contains string
balabala, output this line and
highlight balabala in red.

3. find path/ | sort Sort content of every line (file names
under path) by alphabetical order.

4. head -5 main.txt > top.txt Get first 5 rows in main.txt, store
the result in top.txt. Same logic,
tail -5 means the last 5 rows.

5. tree or tree /path/ Show structure of current directory.
tree . -a includes hidden files.

6. find /path/ -name '*.py' |
xargs cat | grep 'balabala'

Search from whole folder and all
files, which line contains string
balabala, output this line with
highlight. xargs read the stdin
result from pipe, and put the file
name as pass-in parameter to cat,
cat list the content of file (If
without xargs to convert stdin to
pass-in parameter, cat will only list
the file name). Note that we only
know if there’s a line that contains
balabala, but we don’t know this
line belongs to which file. To do so,
we need ag balabala.

7. ag balabala Global search and show which file
which line contains string balabala.
This is much more intelligent than
above command, very useful.

8. wc main.cpp, wc
match_server/*

Count total lines, words and
characters, can do either single file
main.cpp or a bunch of files under a
directory match_server/*.

26

Syntax Description
9. find . -name '*.cpp' | xargs
cat | wc - l

Count total code lines of all .cpp
files under this directory. find .
-name: find all the files under
current directory. wc -l: lines, wc
-w: words, wc -c: characters.

10. echo $PATH | cut -d ':' -f
3,5

Output PATH, and use : to cut the
last 3 and 5 rows. Note that 3,5
means row 3 and row 5; 3-5 means
from row 3 to row 5.

11. echo $PATH | cut -c 3-5 Output PATH’s character 3 to
character 5.

12. cat a.txt | cut -d ' ' -f 1
| sort > b.txt

Pick (cut) every first (1) word in
every row in a.txt, split by ' '
space, and sort in alphabetical order,
store the result in b.txt. If you
want second word in every row,
change 1 to 2.

7.3.4. File Permissions

10 digits file permission: drwxrwxr-x

• d: If this file is a folder or a hyperlink
• rwx: read + write + execute
• There’re 3 pairs of rwx, it use - if it’s none.
• First rwx applies to myself, second rwx applies to team member, third rwx

applies to other users.

chmod +x abc - +x can be +r, +w, +x, to add permission to read, write, execute
for file abc. - chmod -x abc or -r, -w: to remove permission for file abc.

8. Docker
8.1. Rent a Cloud Server

• [1. Terminal and Central Server]: like a rough apartment, can be
customized, belongs to cloud platform, cannot transfer environment, can
call other services.

– Framework or libraries: Django, thrift
– Use ssh in terminal as a window to connect to this server.

∗ ssh root@111.11.111.1, copy your public IP address generated
on Cloud Platform (We must have public IP address!). We’d bet-
ter create another user adduser zjf, and assign user zjf sudo

27

permission by usermod -aG sudo zjf, so as not to do damage
with root identity.

∗ vim .ssh/config to setup HostName 111.11.111.1 and User
zjf. ssh-copy-id server1 for no-password log in.

– Basic version: 1 core (1vCPU), 2GB memory.
– Image: Ubuntu 20.04. (20.04 is required for Docker)
– Config environment for rough server

∗ sudo apt-get update, always update first
∗ sudo apt-get install tmux, only need to install tmux, no need
to store other things (those will be on Docker)

∗ Setup tmux as default config: Go back, scp .bashrc .vimrc
.tmux.conf server1:, then ssh server1 again.

• [2. Second Layer: Cloud Platform] Services (like a hotel, can’t be
customized, just a tool)

– socket: IP + port
– http, mysql, cdn, redis

• [3. Third Layer: Docker, our main dev place]
– Docker can open as many small “virtual servers” as possible, on cur-

rent server you’ve rented. (Build houses inside a house.)
– Docker is good at transferring, from Linux to Windows, from Google

Cloud to AWS, etc.
– With unified image provided by Docker, environment configuration

is no longer needed.
– Use attach to go from Central server to Docker container. Or, a

better way is to use ssh to log in directly from terminal to Docker.

8.2. Docker Image and Container
• Docker has many images, image is like a template. Each image has many

containers.
• Containers generated by the same image has the same environment.
• Image is a mold or stamp, container is a product or pattern. A stamp

can generate many patterns, all are the same.
• Each container is an independent cloud server.
• If we want to transfer Docker image, we’re transfering the container. Use

container to generate an image, download image as a compressed file, then
load this file on server in Docker, and use image to generate a new con-
tainer.

8.2.1. Docker Image

Syntax Description
1. sudo usermod -aG docker
$USER

Add user to docker group (after ssh
server1), to avoid each time in need
of sudo in Docker.

28

Syntax Description
2. docker pull ubuntu:20.04 Docker pull an image.
3. docker images Show all local images.
4. docker image rm ubuntu:20.04
or docker rmi ubuntu:20.04

Delete image ubuntu:20.04.

5. docker [container] commit
CONTAINER_IMAGE_NAME:TAG

Create image for container.
([container] is optional, you can
add string container, or delete this,
both works.)

6. docker save -o
ubuntu:20.04.tar ubuntu20.04

[Transfer image Step 1]: Load
ubuntu:20.04 image and save as
local file ubuntu:20.04.tar. (You
can add read permission for others
by chmod +r ubuntu:20.04.tar)

7. docker load -i
ubuntu:20.04.tar

Load image from local file
ubuntu:20.04.tar.

8. scp server1:ubuntu:20.04.tar
., then scp ubuntu:20.04.tar
server2:. Then ssh server2, and
docker load -i
ubuntu:20.04.tar.

[Transfer image Step 2]: Copy
ubuntu:20.04.tar to local server1
(e.g. Google Cloud server), and then
upload ubuntu:20.04.tar to
server2 (e.g. AWS Cloud server).
Then go to server2 to pull this
image. Finally you can see it by
docker image.

8.2.2. Docker Container

Technical Notes

• docker export/import and docker save/load
– export/import discard historical records and metadata, only keeps

the snapshot of container at that time.
– save/load save whole records, with bigger size.
– When you do export/import, you’re transferring the image of con-

tainer, not the container itself. Because container is not transferrable,
container can generate template, container’s template is trans-
ferrable.

Syntax Description
1. docker create -it
ubuntu:20.04

Create a container, using image
ubuntu:20.04.

2. docker ps -a Show all containers. (docker ps
without -a: show all containers that
are currently running.)

29

Syntax Description
3. docker start container_id Start docker container, container ID

= container_id. If you do docker
start container_name it also
works. You can see container ID in
the first column of docker ps -a,
container name is the last column.

4. docker restart container_id Retart docker container, container
ID = container_id.

5. docker stop container_id Stop docker container, container ID
= container_id.

6. docker run -itd ubuntu:20.04 Create and start a container. (Note
that itd: if you only do it without
d, it will create and start and enter
this container, d means not enter
container.)

7. docker attach container_name Enter container. (When you enter a
container, you are under root
directory, this can be viewed as a
new server or virtual machine.)

8. Control + p, then Control + q Exit container without shutting
down the container. (If you do exit
you shut down the container and
exit.)

9. docker start container_name
and then docker exec
container_name
command_balabala.

Execute command
command_balabala in container
container_name, after you’ve
started this container. (e.g. docker
exec zjf ls)

10. docker rm container_name Remove a container. rm deletes
container, rmi deletes image. (Note
that you can’t delete a running
container, before deletion you need
to stop first.)

11. docker container prune Remove all containers that are
stopped. (Note that here container
word can’t be omitted)

12. docker rename container_1
container2

Rename container.

13. docker update
container_name --memory 500MB

Set container memory.

14. docker stats See CPU, memory, storage, network
info of docker. Control + c to exit.

30

Syntax Description
15. docker export -o
balabala.tar container_name

Export container container_name
to file balabala.tar. (Add read
permission chmod +r balabala.tar.
Load to local server scp
server1:balabala.tar ., load
from local server to another cloud
server scp balabala.tar
server3:.)

16. docker import balabala.tar
image_name:tag

Import local file balabala.tar as
image, name it as image_name:tag

17. docker top container_name Show all processes in
container_name, after you’ve done
attach.

18. docker cp balabala
CONTAINER: bala or docker cp
CONTAINER:balabala bala

Copy file from container to local, or
from local to container. (Note that
bala can be either a file or a path,
e.g. /root .. Docker copy path
doesn’t need -r.)

8.3. Demo: Deploy Docker to Cloud Server

Steps Command
1. Go to terminal, upload image to
your cloud server.

scp balabala.tar server1:

2. ssh connect your cloud server. ssh server1
3. Load the image (“stamp”) to
local.

docker load -i balabala.tar

4. Check this image. docker images
5. Create and run the image (“stamp
the pattern”) balabala:1.0 on local.
-p is to map container port 22 to
local port 20000, because local
port 22 is already used.

docker run -p 20000:22 --name
my_docker_server -itd
balabala:1.0

6. Enter docker. docker attach my_docker_server
7. Set up password (root user cannot
modify password, can only setup
password).

passwd

8. Exit container without shutting
down.

Control + p, Control + q

9. Login as root user. localhost
111.11.1.111, port 20000

ssh root@localhost -p 20000

31

Just now we built our own cloud server on Google cloud server. Purpose of our
own isolated cloud server is to be able to transfer between Google and AWS
(Actually this Matryoshka can go infinite if you want). Now we want to log in
our own cloud server from everywhere.

Steps Command
10. Setup user zjf. adduser zjf
11. Grant sudo to user zjf. usermod -aG sudo zjf, then logout
12. Log in as user zjf. ssh zjf@111.11.111.1 -p 20000
13. Install sudo command (under root). apt-get install sudo
14. Install tmux. sudo apt-get install tmux
15. Change config to setup no-password login. vim .ssh/config

16. Add these in config file

Host server1_docker
HostName 111.11.111.1
User zjf
Port 20000

Steps Command
17. Setup no-password login. ssh-copy-id server1_docker
18. Now you can directly login. ssh server1_docker
19. Go back to terminal. logout
20. Config tmux by uploading local
files from local to docker server.

scp .bashrc .vimrc .tmux.conf
server server1_docker:

21. Then go to tmux. ssh server1_docker, then tmux

Reference: acwing.com

32

https://www.acwing.com

	Essential Linux
	Content

	1. ls, cd, cp, cat, mv, mkdir, rm, touch
	2. tmux, vim
	2.1. tmux
	2.2. vim: editor in command line

	3. Shell
	3.1. Variables
	3.2. Array, expr, read, echo, test, []
	3.3. If, Loop and Function
	3.4. Files

	4. ssh
	5. Git
	5.1. Add, Commit, Roll Back
	5.2. Push, Pull, Branch, Stash

	6. thrift: multiple servers communication
	6.1. thrift
	6.2. Producer-Consumer Model
	6.3. Multi-Threading and Lock
	6.4. User Match System
	6.4.1. Architecture
	6.4.2. C++ Demo

	7. Environmental Variable and Pipe
	7.1. Environmental Variable
	7.2. Pipe
	7.3. Frequently-Used Linux Commands
	7.3.1. Tools
	7.3.2. System
	7.3.3. File Search
	7.3.4. File Permissions

	8. Docker
	8.1. Rent a Cloud Server
	8.2. Docker Image and Container
	8.2.1. Docker Image
	8.2.2. Docker Container

	8.3. Demo: Deploy Docker to Cloud Server

